

Modellierung des Wasserhaushaltes und der Abflussverhältnisse im Haveleinzugsgebiet

Bearbeitet durch: Büro für Angewandte Hydrologie Berlin Dr. B. Pfützner P. Hesse

Ursprüngliche Wunschvorstellung – Änderungen im innerjährlicher Gang bei verschiedenen wasserwirtschaftlichen Maßnahmen

Vorgehensweise

Fokusebene

Prozessnahe Abbildung der Wirkungen von gewässerbezogenen Managementoptionen zur Maximierung des Gebietsrückhaltes (Hammerfließ)

NA-Modell gekoppelt mit

- quasi-instationärem
 Fließgewässermodell →
 Abbildung der Stauwirkung von Wehren
- Grundwassermodell ASM → Abbildung der Wechselwirkungen OW-GW
- Bewirtschaftungsmodell →
 Abbildung von Management
 (Wehrsteuerung → Stauregime)

Zwischenebene

 Abbildung der Wirkungsketten in konzeptionellen Ansätzen (Nuthe)

NA-Modell mit

- Speicheransätzen für OW und GW
- Abbildung wichtiger Bauwerke
- Abbildung des Steuerregimes

Gesamtgebiet

GIS-gestützte

Abschätzung der

Auswirkungen

(Havel)

- Regelbasierte
 Ermittlung von
 "Zusatzverdunst
 ungen" gegenüber einem
 Basisszenario
- → Netto-NW-Aufhöhung

lusse bietsmanagement Havel – TP 4

Gesamtmodell

Biro für Angewandte Hydrologie

- Methodischer Grundansatz

- Landesweite (havelweite) Modellierung mit einer einheitlichen Parametrisierung der Abflussbildungsparameter mit dem Ziel, die Abflussspende der Havel von ca. 135 mm/a abzubilden
 - Interpretation der naturgemäß auftretenden Abweichungen (unbekannte unterirdische Zustromverhältnisse, Nutzungen) der simulierten Abflüsse von den Pegelbeobachtungen in den Kalibrierungsgebieten

Probleme:

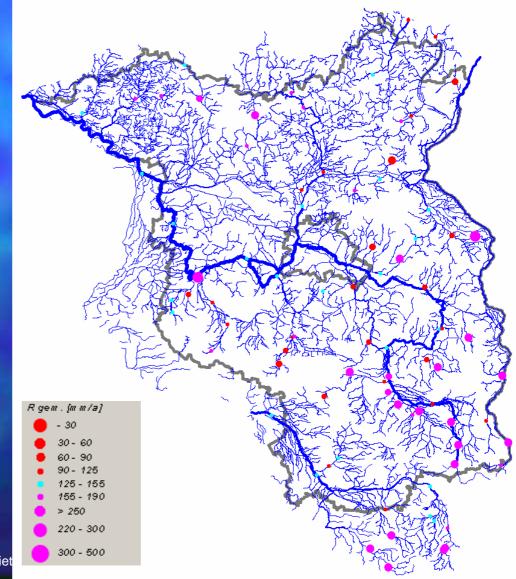
- Bauwerke (Speicher, Wehre, Talsperren) und
- Dynamik des Grundwasserzustromes ist insbesondere in Transfergebieten und in Gebieten, in denen der GWLK 2 dominiert, mit NA-Modellen (Einzellinearspeicher) nur noch bedingt abbildbar. Gleiches gilt für die Einschätzung, ob die Grundwasserleiter gespannt oder ungespannt sind (kürze Reaktionszeiten in gespannten Bereichen)

Gesamtmodell

- Modellierungsdatenbasis (1)

Modellgebiet ca. 38.000 km²

- Brandenburg +
- Berlin +
- wesentliche Zuflussgebiete wie Schwarze Elster oder
- Einspeisung von Messreihen Spremberg/Spree

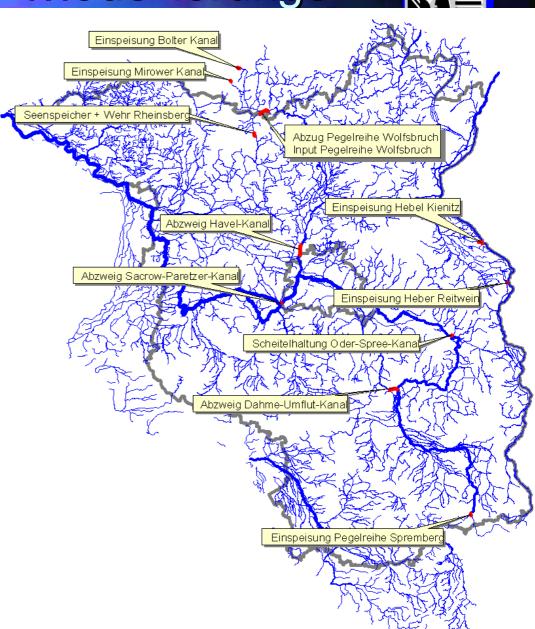

GIS-Datenmodell

1,074 Mio EFL aus Verschneidung von Boden, Landnutzung, DGM, ...

6.474 oberirdische WEGs

11.723 Fließgewässerabschnitte

(generalisiert und hierarchisiert)


Gesamtmodell – Modellierungsdatenbasis (2)

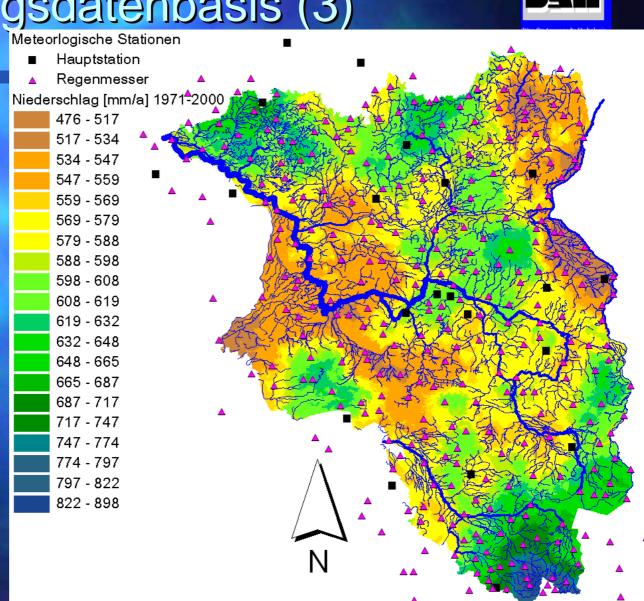
Gewässernetz

- 54.000 Gewässerabschnitte
- Integration von Überleitungen, Einspeisungen etc.

Hydrologische Daten

- 24 Eichpegel
- 36 Validierungspegel

Gesamtmodell


Meteorologische Daten

340 Regen- und Klimastationen,

30 Jahre, Tageswerte

Bild:

Berechnete Niederschlagsverteilung

Gesamtmodell - Analyse der Pegeldaten

10

100

1000

10000

Gebietsgröße [km²]

Sehr breites Spektrum der Abflussspenden für kleinere Gebiete nicht über Unterschiede den Spanne Abflussbildungsbedingungen erklärbar! Mit wachsender Gebietsgröße werden so ca. 140 bis 150 mm/a erreicht Große Spenden Spree (Bergbau der Mittelgebirgseinfluss) 600 500 Untere Oder Havel 100

100000

1000000

155 - 190 > 250 220 - 300

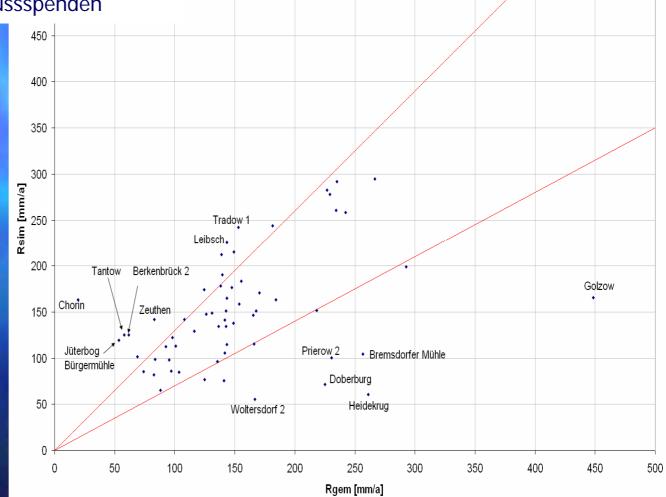
300 - 500

Gesamtmodell

 Probleme einer NA-Modell-gestützten Ermittlung von flächendifferenzierten Abflüssen im Tiefland

- → Was sind die wirklichen Vergleichsgrößen für eine Modellkalibrierung?
- Teils beträchtliche Unterschiede zwischen ober- und unterirdischen Einzugsgebiet,

mangels leicht und sicher bestimmbaren unterirdischen Einzugsgebietsgrenzen wird meist das oberirdische Einzugsgebiet als Bilanzgebietsgröße angesetzt

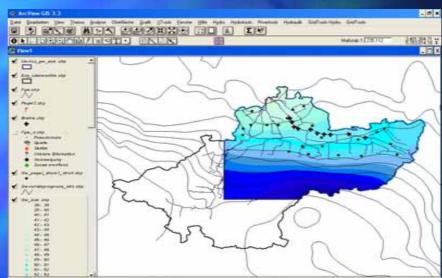

- sehr viele Gewässer sind staureguliert, es findet ein innerjährlicher Abflussausgleich statt (Speicherung im Winter, Abgabe im Sommer), die natürlichen MNQ-Werte wären in vielen Fällen geringer
- Wie groß ist der Einfluss von Wassernutzungen auf die Bilanz bzw. die MQ-Werte?

Gesamtmodell - Ergebnisse

Ca. 40 von 60 Gebieten innerhalb einer Abweichung von +- 30%

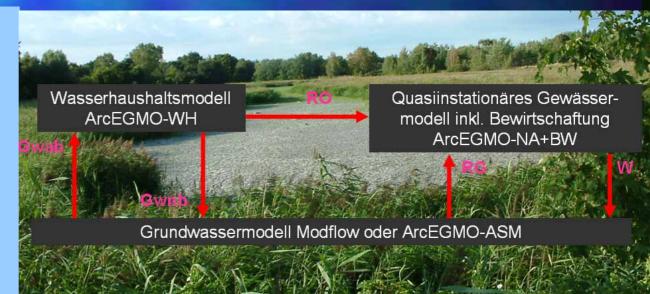
Ca. 20 Pegel mit teils beträchtlich über- oder unterschätzten Abflussspenden

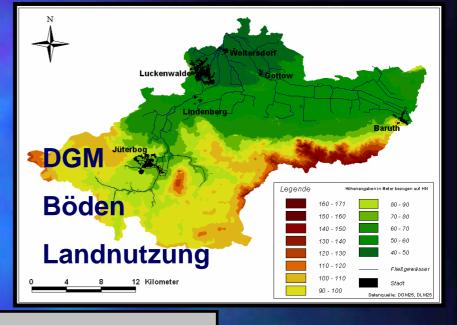
Detailmodell - Zielstellung



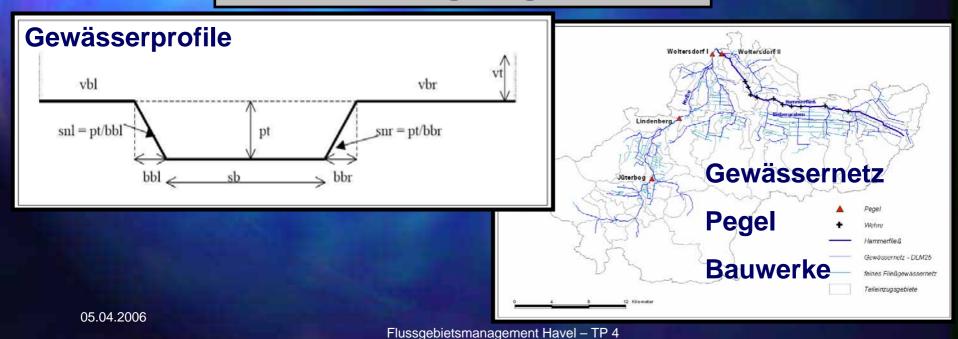
- Möglichst prozessnahe Abbildung der Wechselwirkungen zwischen Grund- und Oberflächenwasser und der Eingriffsmöglichkeiten über Bewirtschaftungsmaßnahmen
- Hohe zeitliche und räumliche Auflösung notwendig
- Hoher Aufwand für Datenbeschaffung, Modellaufbau und parametrisierung
- Hoher (numerischer) Aufwand für Modellanalysen
- → Anwendbarkeit auf ein Fokusgebiet beschränkt
- Schon im Hammerfließ waren nicht alle Eingangsdaten in der notwendigen Qualität verfügbar (Probleme: Gewässergeometrien, Bauwerke, Steuerung der Bauwerke)
- Übertragung auf das Gesamtgebiet nur über Hochrechnungen (plausible Annahmen) möglich

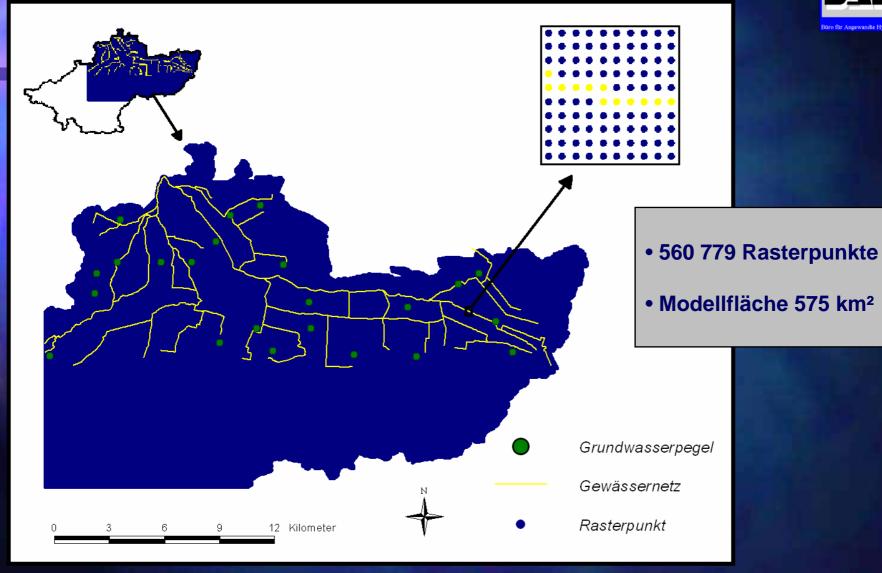
Detailmodell





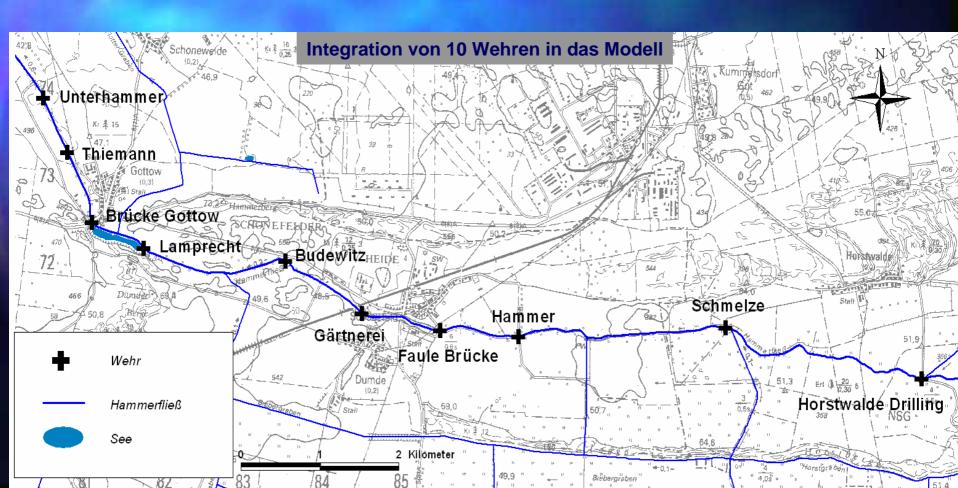
NA-Modell gekoppelt mit


- quasi-instationärem
 Fließgewässermodell →
 Abbildung der Stauwirkung
 von Wehren
- Grundwassermodell ASM →
 Abbildung der
 Wechselwirkungen OW-GW
- Bewirtschaftungsmodell →
 Abbildung von Management
 (Wehrsteuerung →
 Stauregime)



Modelleingangsdaten

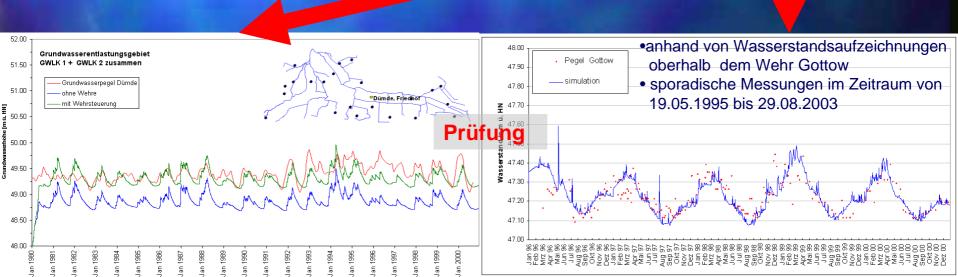
Grundwassermodell ASM



Welche Steuerungsmöglichkeiten existieren im Hammerfließ?

- Insgesamt ca. 54 Wehre und Staue und 2 Schöpfwerke
- Davon 10 Wehre im damaligen Landesdatenbestand (Bauwerkskataster) enthalten und hinsichtlich der hydraulischen Gegebenheiten parametrisierbar,
- Aber keine Aufzeichnungen, wie gesteuert wurde

Rekonstruktion der Wehrsteuerung

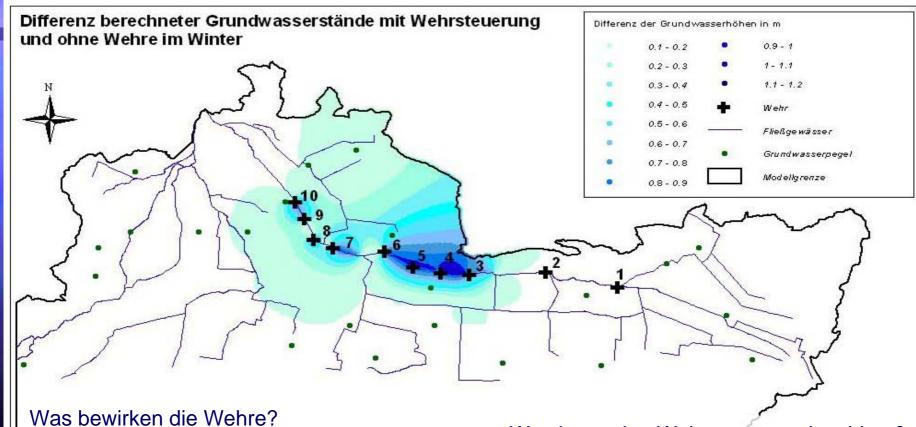


Rekonstruierte Wehrsteuerung Sommer-/Winterstau

Wehr- Nr.	Wehrname	Sohltiefe	gegebene maximale Stauhaltung Sommer	gegebene maximale Stauhaltung Winter	rekonstruierte Stauhaltung Sommer	rekonstruierte Stauhaltung Winter
1	Horstwalde	0,57 m	1,00 m	1,00 m	0,10 m	0,30 m
2	Schmelze	0,83 m	1,00 m	1,60 m	0,30 m	0,50 m
3	Hammer	1,60 m	-	-	0,80 m	1,00 m
4	Faule Brücke	1,93 m	Ar	nahme	1,00 m	1,20 m
5	Gärtnerei	1,70 m	-	-	0,90 m	1,10 m
6	Budewitz	1,70 m	-	-	0,90 m	1,10 m
7	Lamprecht	1,70 m	1,10 m	1,10 m	0,90 m	1,10 m
8	Gottow	1,70 m	1,10 m	1,10 m	0,83 m	1,03 m
9	Thiemann	1,30 m	-	-	0,65 m	0,85 m
10	Unterhammer	1,30 m	0,85 m	0,85 m	0,85 m	0,85 m

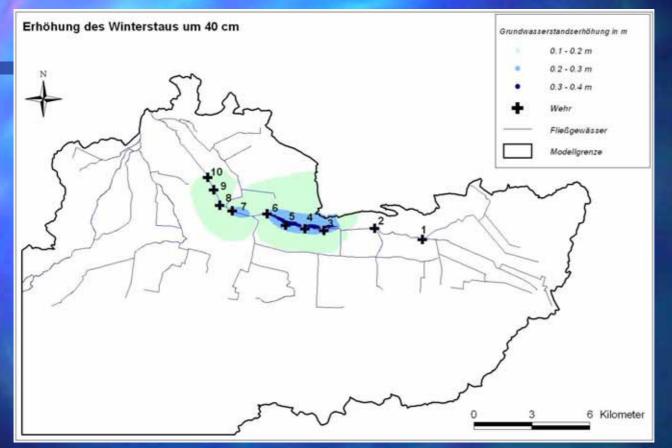
- monatliche Steuerung, Schrittweite beträgt 5 oder 10 cm
- maximale Stauhöhe im Februar und März
- minimaler Sommerstau im August und September erreicht

Tagesnummer		Wehrnummer									
Monat	TN	1	2	3	4	5	6	7	8	9	10
Jan	1	49.91	49.95	49.57	49.72	49.41	48.44	47.49	47.15	44.95	44.75
Feb	32	49.96	50.00	49.62	49.77	49.46	48.49	47.54	47.20	45.00	44.75
Mrz	60	49.96	50.00	49.62	49.77	49.46	48.49	47.54	47.20	45.00	44.75
Apr	91	49.96	50.00	49.62	49.77	49.46	48.49	47.54	47.20	45.00	44.75
Mai	121	49.86	49.90	49 5 2	45	etz	AFIGE (7.44	47.10	44.90	44.75
Jun	152	49.86	49.90	49.52	49.67	49.36	48.39	47.44	47.10	44.90	44.75
Jul	182	49.81	49.85	49.47	49.62	49.31	48.34	47.39	47.05	44.85	44.75
Aug	213	49.76	49.80	49.42	49.57	49.26	48.29	47.34	47.00	44.80	44.75
Sep	244	49.76	49.80	49.42	49.57	49.26	48.29	47.34	47.00	44.80	44.75
Okt	274	49.81	49.85	49.47	49.62	49.31	48.34	47.39	47.05	44.85	44.75
lov	305	49.86	49.90	49.52	49.67	49.36	48.39	47.44	47.10	44.90	44.75
Dez	335	49.86	49.90	49.52	49.67	49	48.39	47.44	47.10	44.90	44.75


Szenarien

- 1. Erhöhung des Winterstaus (WASREG)
- 2. Rückbau von Wehren (RÜWE)
- 3. Reduzierung des Gewässernetzes (RÜGRÄ)
- 4. Reduzierung der Wasserentnahme (REWAS)
- 5. Landnutzungsänderung
- 6. Speicherbewirtschaftung Seen (WASEE)

Kilometer


- Ansteigen der Grundwasserstände
- Erhöhung der Verdunstung
- Verringerung des Gesamtabflusses (MQ)

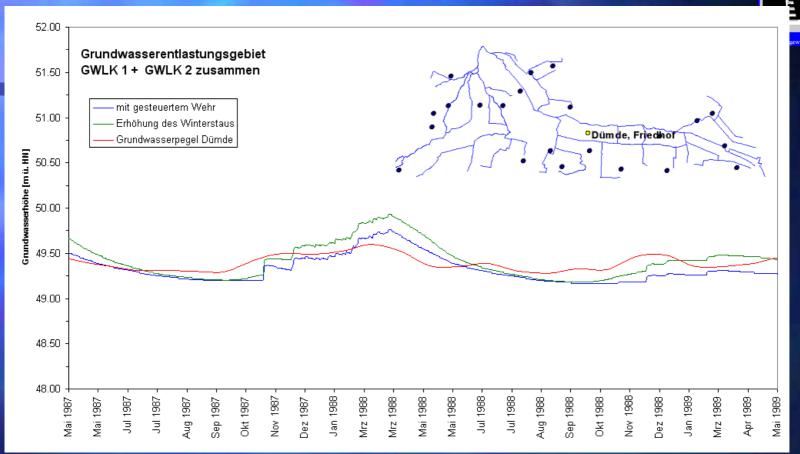
Was kann eine Wehrsteuerung bewirken?

- Veränderung des innerjährlichen Abflussganges
- Niedrigwasseraufhöhung

Szenario 1: Erhöhung des Winterstaus (WASREG)

Wehr	Erhöhung des Winterstaus um:				
1	10 cm				
2	10 cm				
3	40 cm				
4	40 cm				
5	40 cm				
6	40 cm				
7	40 cm				
8	40 cm				
9	30 cm				
10	30 cm				

• Differenz der Grundwassererhöhung durch Staumaximierung und der rekonstruierten Wehrsteuerung zum Berechnungszeitpunkt Winter

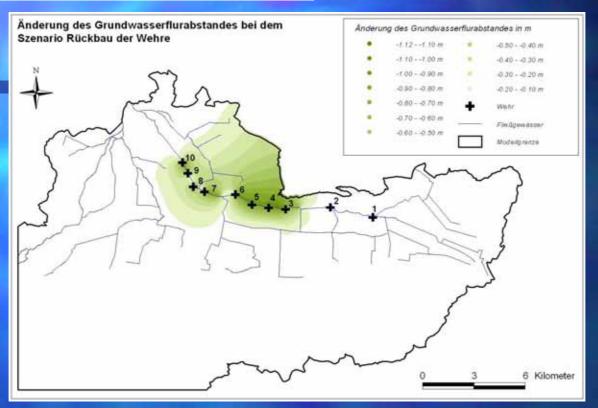


Erhöhung der Stauhöhe von 1 Meter um:	Volumen – Wehr Gottow
10 cm	16 814 m³
20 cm	33 2010 m³
30 cm	48 741 m³
40 cm	69 442 m³

Auswirkungen auf den Wasserhaushalt

- der MQ verringert sich minimal
- die Verdunstung bleibt gleich
- minimale Verringerung der Grundwasserneubildung
 - => Nur geringe Auswirkungen, da Änderungen vorrangig im Winterhalbjahr, hier Verdunstung energie- und nicht feuchtelimitiert

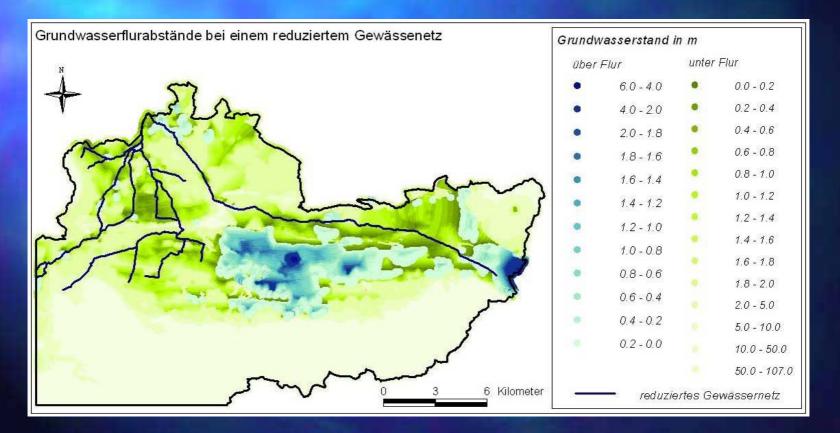
Änderungen im Jahresgang der Grundwasserstände bei einer Maximierung des Winterstaus



- Grundwasserpegel Dümde, befindet sich 650 m vom Hammerfließ entfernt
- die Erhöhung des Winterstaus um 40 cm spiegelt sich in den Grundwasserganglinien wieder, allerdings nur um ca. 18 cm höheren Grundwasserständen gegenüber der Variante ohne erhöhten Winterstau, da der Pegel Dümde sich in ca. 650 m Entfernung vom Vorfluter befindet
- zum Sommer hin nähern sich dann wie zu erwarten beide Ganglinien immer mehr an, da die zusätzliche Gebietsspeicherung quasi "ausgelaufen" ist

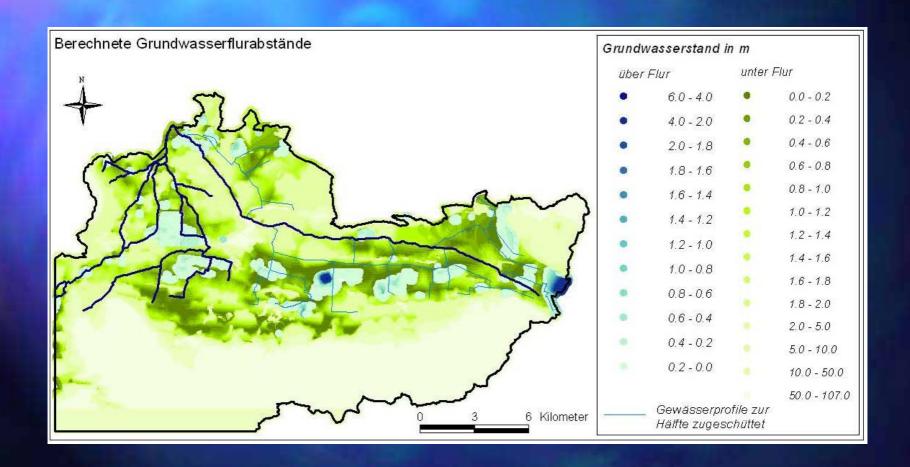
05.04.2006

Szenario 2: Rückbau von Wehren (RÜWE)

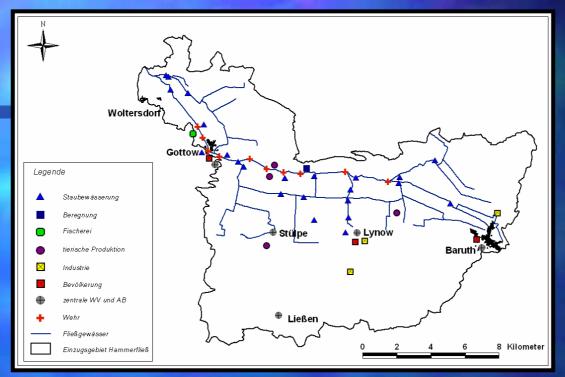


- der Rückbau von Wehren bewirkt ein Sinken des Grundwasserstandes in der näheren Umgebung der Wehre
- durch den Rückbau von Wehren erhöht sich der mittlere Jahresabfluss um 24 l/s
- die mittlere jährliche Verdunstung sinkt
- die Grundwasserneubildung erhöht sich

Szenario 3: Reduzierung des Gewässernetzes (RÜGRÄ)


- vollständige Zuschüttung der vielen Entwässerungsgräben im Einzugsgebiet des Hammerfließes.
- nur noch der Gewässerhauptstrang, das Hammerfließ soll zur Entwässerung dienen
- es wird außerdem angenommen, dass die Wehre im Hammerfließ rückgebaut werden, d.h. außer Funktion sind

Folge: Eine Vielzahl an Flächen mit ehemaligen Entwässerungsgräben steht über Flur, d.h. der Grundwasserstand ist höher als die Geländehöhe

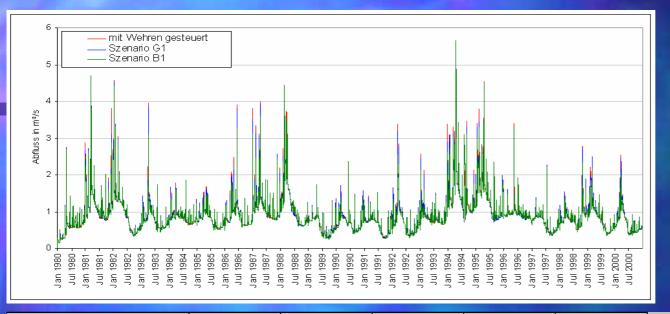

Zuschüttung des Gewässernetzes um die Hälfte der Profiltiefe

- Grundwasserflurabstände betragen in Durchschnitt 20 cm
- einige Flächen liegen über Flur
- Grundwasserfläche über Flur am Wolfsgraben ergibt sich aus einer Vertiefung im DGM

Szenario 4: Reduzierung der Wasserentnahme (REWAS)

- ⇒ es liegen nur genehmigte Entnahmen/Einleitungen des Zeitraumes 1969 bis 1994 vor
- ⇒ die Nutzer wurden nicht in das Modell integriert, d.h. es ist auch kein Szenario der Reduzierung der Wasserentnahmen, und keine Übertragung auf das Gesamtgebiet möglich

Nutzerbilanz Hammerfließ


Entnahme von Grundwasser: 90 l/s Rücklauf von Grundwasser ins Grundwasser: 3 l/s Rücklauf von Grundwasser ins Oberflächenwasser: 12 l/s

Bilanz Grundwasser: - 88 l/s

Bilanz Oberflächenwasser: 12 l/s (nur Rücklauf, keine Daten zur Entnahme)

Szenario 5: Landnutzungsänderung- G1 "Gute fachliche Praxis"+B1 "Bestmögliche Wassergüte"

im Hammerfließ

Szenario	MQ [m³/s]	MQ Sommer [m³/s]	MQ Winter [m³/s]	Ver- dunstung Jahr [mm/a]	Grund- wasser- neubildung [mm/a]
mit Wehren gesteuert	0.902	0.764	1.040	549	42
G1-"Gute fachliche Praxis"	0,904	0,777	1,030	551	38
B1-"Bestmögliche Wassergüte"	0,884	0,774	0,996	552	37

- der MQ sinkt minimal
- die Abflussspitzen werden leicht gedämpft
- die Verdunstung erh
 öht sich minimal
- die Grundwasserneubildung sinkt minimal

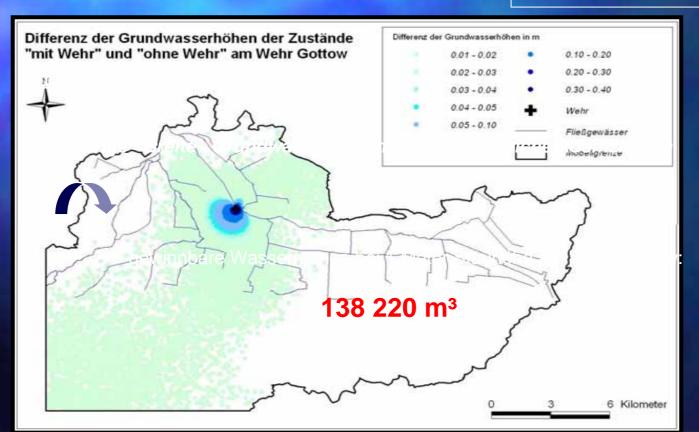
Einfluss von Landnutzungsänderungen

Vergleich Ist-Zustand mit B1 "Bestmögliche Wassergüte"

- → Hier berechnet mit dem Gesamtmodell, d.h. ohne Berücksichtigung von Unterscieden in den ober und unterirdischen Einzugsgebieten → Problem Hammerfließ
- Ergebnis: sehr geringe Änderungen (liegen im Bereich des Meßfehlers Niederschlag)
- → keine Betrachtung weiterer "schwächerer" Szenarien notwendig

	Jahres-MQ		Sommer-MQ		Winter-MQ		Abweichung
Name	Ist	B1	Ist	B1	Ist	B1	MQ
Hammerfließ	0.48	0.45	0.43	0.41	0.53	0.50	-5.6
obere Nuthe	1.17	1.09	1.12	1.05	1.22	1.13	-6.8
Nuthe	5.15	5.09	4.72	4.65	5.58	5.52	-1.2
Döllnitz	0.09	0.09	0.09	0.09	0.08	0.09	3.5
kleiner Rhin	0.20	0.18	0.19	0.17	0.20	0.18	-9.6
Rhin	5.97	5.48	5.56	5.05	6.39	5.92	-8.2
Obere Havel vor Einmündung der Spree	15.50	14.30	14.30	12.90	16.60	15.70	-7.7
Havel vor Eintritt in die Seen unterhalb							
Brandenburg	75.70	74.20	70.00	68.10	81.60	80.40	-2.0
Havel Schleuse Gnevsdorf (GVF)	99.70	96.70	91.50	88.10	108.00	105.00	-3.0

Gewinnbare Wassermenge

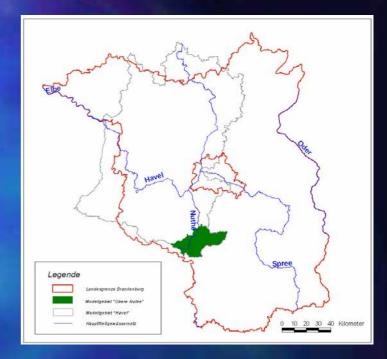


Wasservolumen bei einer Stauhaltung von 1 Meter am Wehr Gottow:

Volumenberechnung anhand der Differenz der berechneten Grundwasserhöhen "mit Wehr" und "ohne Wehr" der Rasterzellen unter Berücksichtigung des Speicherkoeffizienten

Wehr Gottow

Schützenwehr, Doppelschütz mit Kurbel Lichte Durchflussbreite: 4,90 Höhe: 2,10 Maximale Stauhöhe 1,10 m



Übertragung auf das Gesamtgebiet

- Im Gesamtgebiet der Havel bestehen 475 Wehre
- den Wehren sind keine Stauziele bekannt

Annahmen zur Übertragung auf das Gesamtgebiet:

- die Stauhöhe beträgt an allen Wehren 1 m
- im Gesamtgebiet liegt die gleiche hydrogeologischen Situation, wie im Fokusgebiet Hammerfließ am Wehr Gottow, vor

bei einem Rückbau aller Wehre entsteht ein Verlust von Retentionsflächen mit einem Volumen von:

65 Millionen m³

Wasserstandserhöhung an Seen (WASEE)

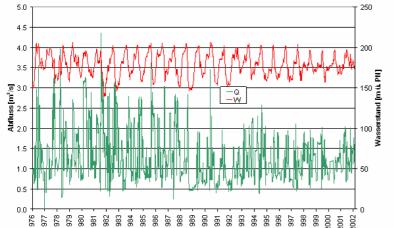
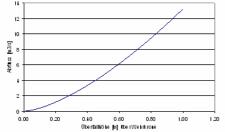



Abbildung 2-1: Wasserstände und Abflüsse am Pegel Rheinsberg OP

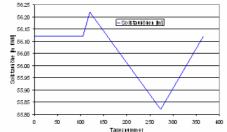


Abbildung 2-2: W-Q-Beziehung (links) und Sollstauhöhen im See laut Bewirtschaftungsplan (rechts) am Wehr Rheinsberg

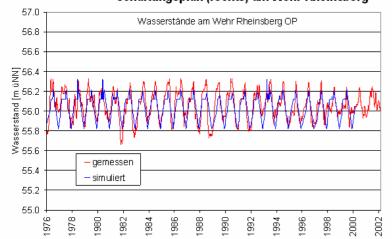
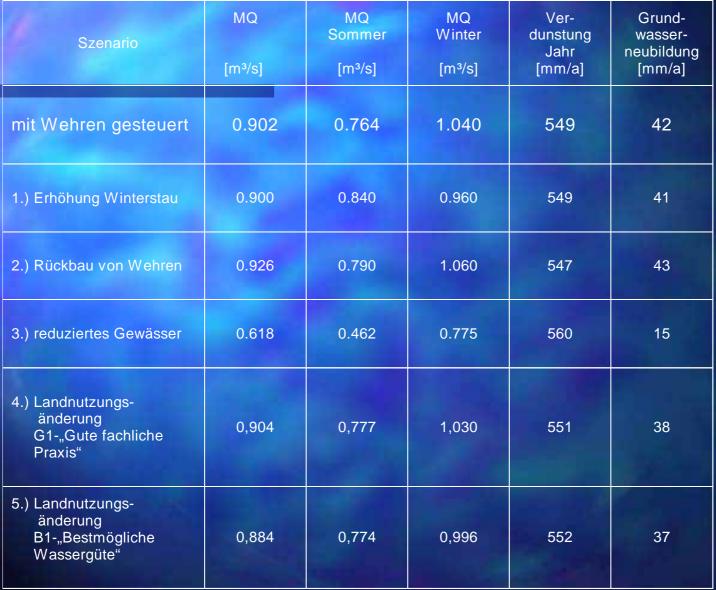


Abbildung 2-3: Gemessene und berechnete Wasserstände für Rheinsberg OP



Bewirtschaftung von Seen modellierbar, wenn folgende Angaben vorliegen:

- Speicherinhaltslinie,
- WQ-Beziehung,
- Steuerregeln
- → Für Gesamtgebiet nicht verfügbar!
- Abschätzung der Möglichkeiten über einfache GIS-Analyse:
- Im Havelgebiet wurden 177 Seen als WRRL-relevant eingestuft.
- Davon sind 156 ans Gewässernetz angeschlossen, könnten also gezielt Wasser z.B. zur NW-Aufhöhung in der unteren Havel abgeben.
- Diese Seen haben eine Fläche von 345 km².
- Bei einer angenommenen Speicherlamelle von 20 cm ergäbe sich ein Volumen von 69 Mio. m³.
- Mögliche Abflusserhöhung von 10 m³/s über 80 Tage

anagement Havel – TP 4

Vergleich der Szenarien

Bewertung der Szenarios als Handlungsoption aus wasserwirtschaftlicher Sicht

Handlungsoption	Bewertung				
Erhöhung des Winterstaus	 - ja, bei geeigneten Gewässerprofilen → Speicherlamelle zur NW-Aufhöhung 				
Rückbau der Wehre	Wegfall des Wasserrückhaltes im GebietSchaffung von Ausgleichsmaßnamen, wie z.B. Sohlrampen erforderlich!				
vollständige Reduzierung des Gewässernetzes	 ist für den Wasserhaushalt aufgrund der Verdunstungserhöhung und Verringerung der Grundwasserneubildung als negativ zu bewerten Teilweise keine landwirtschaftliche Nutzung mehr möglich 				
Teilweise Zuschüttung des Gewässernetzes	- ist als Ausgleichsmaßnahme zur Grundwasserstandserhöhung bei Rückbau der vielen Staue als positiv zu bewerten				
Landnutzungsszenarios "G1" und "B1"	 hat bei gleichbleibenden Grundwasserflurabständen, mit denen die zukünftige Landnutzung teilweise gar nicht möglich wäre, wenig Auswirkung auf den Wasserhaushalt als positiv ist die Dämpfung der Abflussspitzen zu bewerten 				
Wasserstanderhöhung an Seen	- Schaffung einer Speicherlamelle zur NW-Aufhöhung				